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PROPERTIES OF CHAOTIC FLUID OSCILLATIONS IN CYLINDRICAL BASINS 

T. S. Krasnopol'skaya and A. Yu. Shvets UDC 532.595:534.1 

The present study is devoted to a deeper study of the properties of the chaotic inter- 
action regimes of the oscillations of a free fluid surface in a cylindrical rigid basin and 
shaft rotations of a finite power electric engine, excited by spatial oscillations of the 
basin. The possibility and existence of such regimes were proved in [2]. in the paper men- 
tioned, however, the proof of existence of chaotic regimes was provided only for the special 
case of planar oscillations of a free fluid surface, it is, therefore, necessary to inves- 
tigate the possibilities of appearance of chaotic regimes in the more general case of spatial 
oscillations of a free surface. 

Consider the mechanical system shown in Fig. i. The crank-rod mechanism connects, on 
one hand, with the electric engine shaft, and, on the other, with the platform, to which is 
rigidly attached a cylindrical basin of radius R, partially filled by a fluid. When the 
crank a turns by an angle ~, the platform acquires a displacement in the form u(t) = a[cos 
@ + a/4 (i + cos 2~)], where a I = a/b, and b is the rod length. To describe the oscillation 
of the free fluid surface we introduce a cylindrical coordinate system Oxr@ with origin on 
the shell axis at the unperturbed fluid surface. The surface equation of the free fluid 
surface is then written in the form x = D(r, @, t). The fluid is assumed to be inviscid and 
incompressible with density p, filling a cylindrical shell of transverse cross section to a 
depth x =-d. The direction of the shell displacement u(t) coincides in the cylindrical 
coordinate system with the direction @ = @0. 

For the fluid velocity potential ~(x, r, @m t) the kinematic boundary problem is written 
down as follows [3]: 

V2~=O ( - -d<x<~] ;  r, OES); 

- - o  i - -  

Fig. i 
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@ l  < o o ;  O~ I = 0 ;  O~ t 
o~ ~=o -37  I~=~ -32" .=_~ = o; 

O~ Oh 

A c c o r d i n g  t o  t h e  D i r i c h l e t  p r i n c i p l e  k±l,/'' we o b t a i n  f rom t h e  c o n d i t i o n s  [4 ,  7] 

where 

(1) 

~I: = O, (2) 

I: =-- (Vq~) ~" dSdx --  (~)x=n ~ dS. (3) 

Representing ~ and ~ in the form of series in oscillation eigenfunctions, then by [3, 7] 

i ' ~ (r~ sin/O]; ~l (r, o, ~) = ~ [q~i (t) × .  (r) cos o = q .  (t) ~ . . ,  
Li 

{V --= ~.,d s 
<V v., r, O, t) V [(p~/(t) XiJ (x, r) cos iO + ~9i/(t) Xi: (x, r) s:n iOl, 

i,7 

( 4 )  

where 

×~i(r)= N~ld~(kj) ,  (i = 0,1,2, • / =  1,2,3 .... ): 

%iJ(x,r)=sech(h~fl)  - k~ j (d+x)× i ; ( r ) ;  
k3) 

.,, 1 (1 -660~) [1- -{  ~ "  ~"] S,(k, :~. ) [sic] = v ) j  -, ' 

Je is a Bessel function, kij are the eigenvalues, determined from the equation J~(kijR) = 0; 

and 6ij is the Kronecker symbol. 

On the basis of (2) one can obtain relations of the form 

l ° C,$ ~ f  (t) = ij~nqm~ (t), (6 

C,S/ x where £ijmn are nonlinear functions of the amplitudes q0z kt/ [7, 8]. 

The kinetic energy of the fluid is then written down in the following form: 

T = T I~)~ + ~ -2" p (Vq~)2dSdx = "2 I~2 + 

1 " I c , s  ~ , s  1 " I " 
k~J"'~¢Pu ~'~'~ T 1.2 + Y m°u~ + + y mo u~ + ~ -  pS = 

t,],m,n 
2 "c,s'¢,s + ~ -  pS a~jmT, q~i qmn, 

L],m,n 

(7 

where I is the moment of inertia of the engine shaft [i], m 0 is the mass of the shell with 
the fluid, and kijmn and dijmn are nonlinear functions of qC.S(t) [7, 8]. 

0g 

The displacement potential energy of the free fluid surface equals 

v=p Se  e s  t' 
0 0 

rC. ,  c.s  1 c ~ ¢ s ) ,  

i i,i 

where ~ is the displacement vector of points of the free fluid surface, 
acceleration, and 

(8 )  

g is the free fall 

rS.. 
J 
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Therefore, the system Lagrangian acquires the form (a: << O) 

L T - -  V I~ ~ + -~- moa~, ~ sin ~0 + ~ "~,E ~,~ = ~ a i j m n q i i  qmn 4-  
i,],m,n 

1 
-t- apS (~" cos Xb -}- "~ sin ~p) 2 (r;lq~] + r~iq~]) - -  2 -  pSg E qCiJ~q~iS " 

i i.i 

(9)  

The procedure of constructing the Lagrange equation makes it possible to construct the 
following equation for the variable *(t) 

/~  = - -  moa~ ~ s i n ,  cos ~ - -  moa~ sin # + apS ( ~  sin # - -  

- - ~ c o s , ) ( E  r~]q~i + E r,iq,,)' - -  a p S ~ c o s  * ( E  r, "~ + ~.~ s ", r~iqti ) . (i0) 
i i l i 

On the basis of tg)" \ one can construct the Lagrange equation for other funoamental coor- 

alnate s stems more • . c,s "" y , preclsexy: qij (t). The set of these equations is countable (since 
this is the total amount of coordinates q~S(t)), therefore we introduce a simplifying as- 

sumption concerning the resonance nature of oscillations of the free fluid surface excited 

by the engine. Let the rotational velocity of the shaft ~(t) in the steady regime of the 
engine be near the eigenfrequency m: of the fundamental oscillation of the free surface, 
corresponding to the fundamental oscillation shapes qcu(t)×:i(r)cos@ and qsu(t)Xil(r)sin0. 
We introduce in the treatment the small positive parameter e = (arl:k~l)l/~, where [9] 

1 R 
rn = "2-.f r~×n(r) dr = 0 , 4 9 6 8  R a n d  /~11 = 1,8412 R - t  . 

o 

Assuming that the conditions of resonance excitation are met, we put 

1 B~} P (t), 
= T  ( ~  l l )  

where 

o, = (gknthkn~ :/~ 

The oscillations of the free fluid surface are approximated by oscillations of the 
fundamental and secondary shapes [9] 

qo: (t) ×o: (r); q~i (t) ×2: (r) cos 20 H q~: (t) ×=: (r) sin 20. 

The a m p l i t u d e s  o f  t h e  modes i n c l u d e d  a r e  d e t e r m i n e d  in  t h e  fo rm 

q~: (0 = 8X [Pl (*) c o s ,  (t) + q, (~) s i n ,  (t)]; 

q~l (t) = e% [P2 (*) cos ap (t) + q2 (T)  sin ~0 if)l; (12)  

qol (t) = 8~X [A a ('0 cos 2 ,  (t) + Be: (~) sin 2 ,  (t) + Col (~)]; 

q~i' (t) = e~X [A~IS (~) cos 2@ (t) + B~i' (~) sin 2 ,  + C~i s (z)]. 

where X th klid {o3 I 
= kn gkn ," ~=~-s~%b(t) is slow time, and pi(T), qi(~), 2~ij.c,s,~), ~c,s~ij (~)' 

cC,St .ij ~) are dimensionless amplitudes. To determine them we substitute (12) into the Lagran- 
glan expression, and apply the averaging procedure over ,(t) (with fast time appearing ex- 
plicitly) from 0 to 211. As a result we obtain an expression for the averaged Lagrangian 
<L>, from which, as shown by Whitham [4], one can obtain the averaged Lagrange equations. 

Restricting B<L> to terms of order O(e 4), only Pi, qi, dpi/d~, dqi/d~, ~, AC~ s, ~h:~C'S and ~h1~C'S 
, , c , s  • d = C , S , •  a p p e a r  i n  i t ,  w h i l e  a ~ h :  / a~ ,  =h :  / a~  and  dC~n[S/d~ do n o t .  T h e r e f o r e ,  f rom t h e  e q u a t i o n s  

(a(L)/aA%iS=O; (a(L>/aB~,5=O, (a<L)/acfZ)= 0 we determine the quantities AC'Shx" ~hl~C'S and Uh:~C'S 

as functions of pi(T) and qi(~). Following substitution of the relations obtained, <L> is 

written down as a function of ~(t), PI(T), ql(~), p2(~) and q=(z) only [2] 
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1 i ~ 2 +  1 • 1 i@/dp ,  dql) (L) = T "-4-" m°a~*~ + Y e4g~9S~ ~ a~ qt-- P, d~ ] + 

1 [dp~ dq~ 7~ ~q2+Y~P2+ (13) 
+ T \-E q= - P~ dr ] + ~opl + u-T, 

7o ~qt + ~E + i I I 
+--~- ~- Ae~ + --2 BM= + ~{...}, 

J 

1 
where 7o=C°SOo; 7i=sin0o; E = E  I+E2;  E~=-~-(p,~+q~); M=piq~--P2q,. 

in this case E and M correspond, by eigenvectors, to the energy and angular momentum 
of the fluid oscillations. The constants A and B are given in [8]. 

/,\ ~£ 
We introduce a replacement of variables in the form ~L[) = ~LT), which we use following 

the averaging over ~(t> of the equation for the rotational coordinate of the engine shaft. 
As a result we have for L±o) .... 

de 
dr - -  e=M=(e)--e=~lqi--e~=q=' (14) 

where 

%~riipScoi e ,M2 (fl) = 4 [ffP ( f l ) - -  H (f~)] . es~t' = I 
(I + moaD Co, ' 

7~ 
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TABLE 

Value 

1 

of parameter N I 

0.05-0.099 
0.1-0.1014 
0.1015-0.1016 
0.10161 
0.10162 
0.10163 
0.10164 
0.10165-0.38 
0.38001-0.387 
0.388-0.524 
0.525 

,,,,,,,,,,,,,,, 

Type and multiple characteristic of steady- 
state regime 

Equilibrium position 
Limiting cycle. Onefold, period 14.375 
Limiting cycle. Twofold, period 28.75 
Limiting cycle. Fourfold, period 57.5 
Limiting cycle. Eightfold, period 115 
Chaos. "Small" twofold 
Chaos. "Small" onefold 
Chaos. "Large" 
Limiting cycle. Twofold, period 8.75 
Limiting cycle. Onefold, period 4.375 
Equilibrium position 

Therefore, the final closed system of Lagrange equations, describing the interaction of the 
oscillations of the free fluid surface and the rotation of the engine shaft, is represented 
on the basis of (13) and (14) in the form 

dpi _ 
d'~ --  - - a P i - -  (v + AE) ql - -  B M p 6  

dql 
-d'c ..... aq~ + (v ÷ AE) p~ + BMq~ + 7 6  

dv = N3__.NL v - - s ~ ? o ( q  1 + q ?_i '~ .  
d~ ?o ] ' 
dp~ 
d~ = - -  ap2 - - ( v  + AE)  q~- -  BMpt ;  

dq2 
~d~: = - -  aq~ -5 (v + AE)  p~ - -  BMql  '5 71, 

where ~2M:(~) = N O - Nz~ is an approximation of the static characteristics of the engine, 

2~___~ ; 6 
/V s := . [N O --iVl(ot] ; ~t ----- °Ji'~o o~--~ ,,o) i 

(15) 

; and 6 is the coefficient of viscous damping forces 

6~; s, additionally included. 

The purpose of the present study is the analysis of steady-state interaction regimes. 
To construct solutions of the corresponding steady state regimes, as well as to determine the 
various quantities characterizing these regimes in the parameter space of the system of equations 
(15), we carried out a large number of studies of this system by means of the Personal Com- 
puter (PC) "Pyramid-286" (an IBM PC/AT 286). The basic numerical method used to construct 
solutions of the corresponding systems of equations is the fourth order Runge-Kutta method 
with a varying step correction according to Prince-Dorman. in carrying out the calculations 
we guaranteed a local computational accuracy of no less than O(10-s). The construction of 
the Poincare map was carried out by means of the Henon method [6]. The Lyapunov character- 
istic indices were constructed by the method due to Benettin et al. [5]. At the same time, 
the computational algorithm of the Benettin method was modified, making it possible to elimi- 
nate the effect of nontypical trajectories on the values of Lyapupnov indices. All phase 
portraits and Poincare maps presented in what follows were obtained on the "Pyramid 286" 
PC by means of the software package GRAPHER. 

As a result of the numerical experiments performed, regions of existence of steady-state 
chaotic regimes of the investigated systems were observed, and transition scenarios from 
regular to chaotic motions were analyzed. 

Consider this transition in more detail. We assume that the systemparameters of the 
system of equations (15) and the initial conditions are, respectively, equal to: ~ = 0.i; N 3 = 
-0.i; ~ = 0.5; ~0 = i; 71 = 0, p1(0) = q1~u) = v~u) = 0, p2~0) = q2~u) = 0.01. 

As a bifurcation parameter we consider the parameter NI, characterizing the inclination 
angle of the static characteristic of an electric conductor, depending on the type of applied 
source of oscillation excitation. 
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Fig. 4 

As is well-known, one of the most reliable indications of the existence of a chaotic 
attractor is the presence in the spectrum of Lyapunov characteristic indices of system (15), 
of only one positive index. Figure 2 shows the leading Lyapunov index (Xi) as a function of 
the parameter N I. As seen from the figure given, there exists an interval of N i values, for 
which the X l value is positive. Consequently, in this interval system (15) manifests a 
chaotic attractor. 

Table i presents types of steady-state solutions of the system of equations (i0) for 

a parameter N i varying from 0.05 to 0.525. We consider in more detail the bifurcations ob- 
served in the system. For 0.i > N i ~ 0.05 there exists a stable equilibrium position. At 
N i = 0,i this equilibrium position loses its stability, leading to the appearance, as a result 
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of the Andronov-Hopf bifurcation, of a onefold limiting cycle of period 14.375. At the point 
N z = 0.1015, then, this limiting cycle becomes unstable, and, as a result of period doubling 
bifurcation, a stable twofold limiting cycle of period 28.75 is generated in the system. 
Further period doubling bifurcations occur in the system at the points N I = 0.10161 and N I = 
0.10162, leading, respectively, to generation of fourfold and eightfold limiting cycles of 
periods of 57.5 and 115. A further cascade of doubling bifurcations leads to generation of 
a chaotic attractor at N~ = 0.10163. The projection of this attractor on the ~P~qiJ ~ ~ plane 
is shown in Fig. 3a. As follows from the results obtained, the transition to chaos in the 
system is implemented rigorously according to the Feigenbaum scenario. A structural rear- 
rangement of the "chaos-chaos" type is observed in the system at N l = 0.10164, as a result 
of which there is merging of the twofold spiral of the attractor into a onefoid. The projec- 
tion of this chaotic attractor spiral is shown in Fig. 3b. The Poincar~ map of this chaotic 
attractor by the plane y = -1.55 is shown in Fig. 3c. As seen from Fig. 3c, this map has a 
band structure. The major Lyapunov index of both chaotic attractors, given in Fig. 3, is 
approximately 0.27. We turn attention to one characteristic feature, present in all regimes 
shown above, both regular and chaotic, it consists of the fact that for all steady-state 
regimes P2 = q2 = 0, i.e., oscillations (chaotic and regular) of the free fluid surface occur 
only in the first form. 

At N l = 0.10165 the system undergoes again a rearrangement of the "chaos-chaos" type. 
The chaotic attractor, shown in Fig. 3b, is changed by a chaotic attractor of a different 
type. The projections of this attractor (for N I = 0.125) on the planes (Pl, ql), (Pl, v), 
(P2, q2), respectively, are shown in Figs. 4a-c. Figures 4d-e show the projections of the 
Poincar~ map of the given attractor by the plane v = -2.5. 

Consider the main distinctions between this chaotic attractor and the chaotic attractors 
shown in Figs. 3a, b. Firstly, nonvanishing chaotic oscillations are generated in the second 
form in the variables (P2, q2)" Secondly, the oscillation amplitudes in the variables p~, ql, 
and v increase substantially. Thirdly, the spiral structure of the attractor disappears, and, as 
seen from Fig. 4, it becomes substantially more complicated. Fourthly, the band structure of 
the Poincar~ map is lost, and these maps acquire the form of some stochastic set (Figs. 4d, e). 
Fifth, the value of the major Lyapunov index increases to values of the order of 0.45-0.6, 
i.e., the rate of dispersion of close phase trajectories increases by almost a factor of two. 
The chaotic nature of this type, is conditionally called "large," unlike the chaotic attrac- 
tors shown in Fig. 3, called "small" in the following. 

As a result of the numerical calculations performed it has been established that a 
"large" chaotic attractor exists in system (15) for parameter values changing from 0.10165 
to 0.38. We note that the cascade of doubling bifurcations earlier investigated, as well 
as the generation of "small" chaos and its structural rearrangements, occur in a very small 
interval of variation of the parameter N I. Thus, for varying N I values the region of exis- 
tence of "large" chaos exceeds substantially the region of existence of "small" chaos. The 
projections of the chaotic attractor, constructed for N l = 0.3745, and its Poincare map by 
the plane v = -i are given, respectively, in Figs. 5a-e. 

As seen from Figs. 4 and 5, the chaotic attractors constructed on the boundaries of the 
region of existence of "large" chaos are qualitatively identical, and only some decrease in 
amplitude is observed, with chaotic oscillations established for increasing N l values. 

it must be stressed that a "large" chaotic attractor has a relatively large attractive 
basin. At least, for any solution of system (15), at an initial moment of time found in the 

r I I I I I I 
region S:ilPil ! 3, lqil i 3, iVl ! 3, i = i, 2}, the "large" chaotic attractor is a unique 
attractor, i.e., all solutions of the system of equations (I0), whose initial values are 
found in the region S, become chaotic. 

We would like to turn attention to an extremely important feature. The construction of 
phase portraits, Poincar~ maps, and the calculation of Lyapunov indices must be carried out 
with a time delay relative to the initial time of the numerical calculation - one must discard 
a certain (not very substantial) number of the first N values of the corresponding time reali- 
zation i ~ f ,  x / ,  ~ Pi~tk), qikckj, V~kj, i = i, z; k = N + i, N + 2, N + 3, .... The necessity of this 
discarding is related to the exclusion of phase portraits of steady-state regimes by trajec- 
tories of transient processes, in the opposite case chaotization of the transient process 
can be perceived erroneously to occur following the steady-state chaotic regime. 
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INDUCED OSCILLATION OF A VISCOELASTIC PLATE, TAKING 

ACCOUNT OF HEAT LIBERATION 

i. A. Kiiko and S. Yu. Gvozdev UI)C 5 3 9 . 3  

in solving coupled thermoviscoeiasticity problems - in particular, for the induced non- 
linear oscillations of plates and shells - numerical methods have mostly been used; analytical 
approaches have not been adequately developed. Although analytical approaches are approximate 
in ali the problems considered, their importance is obvious: they permit judgements regard- 
ing the qualitative behavior of structures. Therefore, the aim of the present work is the 
correct formulation and approximate analytical solution of the thermoviscoelasticity problem 
for the induced oscillations of a rectangular plate made of a linear viscoelastic material, 
taking account of the internal heat liberation, and investigation of the influence of tem- 
perature and geometric nonlinearity on the characteristics of induced oscillation. Suppose 
that a plate occupying the region 0 ~ x < a, 0 < y ! b in the X0Y plane undergoes oscilla- 
tions under the action of a transverse io-ad of ~ntensity q = F sin ~t varying harmonically 
over time. The plate surface is assumed to be heat insulated, and a constant temperature T o 
is maintained at its ends. 

The system of equations describing the motion of a viscoplastic plate consists of the 
Karman equation, in which the elastic modulus E is replaced by its operator analog E, and 
the heat-conduction equation 

D o "~ a2w q . s v~v = L (=; ~))-- ~ ~ + --#,  

v 

~y~(D = -  E L  1 (w; w). 
! 

' ~ ° I~ZO z 

] c a T - - ) ~ A T = s Z ~ i ' e ~ i - -  siisii + 3 g %  z 
t a t  " R(o----T- R,(o) 
1 ' 

~ [q~(t)] = Eo [1--~O (x, y, z, 01 [q~(0-  t" r(t--,~, 7") ~ (T) e~] 
0 

(1) 

Here E 0 is the instantaneous elastic modulus; D O = n0n-/izLi~ " q'"o'" - v-)°" is the corresponding 
cylindrical rigidity; v is Poisson's ratio (assumed to be constant); h is the plate thickness 
and w is its flexure; p and F(t, T) are the density and reiaxational kernel of the plate mate- 
rial; ~ is the stress function; L(w, ~) and L1(w , w) are the operators known from plate 
theory [i]; c and X are the specific heat and thermal conductivity of the material, respec- 
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